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Abstract
Anon-demand single-photon source is a key requirement for scalingmany optical quantum
technologies. A promising approach to realize an on-demand single-photon source is tomultiplex an
array of heralded single-photon sources using an active optical switching network.However, the
performance ofmultiplexed sources is degraded by photon loss in the optical components and the
non-unit detection efficiency of the heralding detectors.We provide a theoretical description of a
generalmultiplexed single-photon sourcewith lossy components and derive expressions for the
output probabilities of single-photon emission andmulti-photon contamination.We apply these
expressions to three specificmultiplexing source architectures and consider their tradeoffs in design
and performance. To assess the effect of lossy components on near- and long-term experimental goals,
we simulate themultiplexed sources when used formany-photon state generation under various
amounts of component loss.We find that with amultiplexed source composed of switches with
∼ −0.2 0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of
efficiently producing 20–40 photon states with lowmulti-photon contamination is possible, offering
the possibility of unlocking new classes of experiments and technologies.

1. Introduction

Anon-demand single-photon source is a key requirement formany optical quantum technologies, including
quantumkey distribution schemes using quantum repeaters [1], quantummetrology using photon-number
states [2, 3], analog quantum simulators [4], and the boson samplingmachine [5]. The ultimate optical
quantum technologymay be the quantum computer [6], capable of efficient integer factorization and digital
quantum simulation [7, 8], which relies critically on the development of a high-performance, on-demand
photon source in order to efficiently generate large quantum resource states [9, 10].

While research efforts continue in developing on-demand single-photon sources using atomic systems,
achieving high spectral purity and high collection efficiency simultaneously remains a challenge [11]. An
alternative approach commonly used in quantumoptics experiments is heralded single-photon sources
(HSPSs) such as those based on spontaneous parametric down-conversion (SPDC) or spontaneous four-wave
mixing: parametric processes which use a pump laser in a nonlinearmaterial to spontaneously generate photon
pairs (figure 1(a)). Detecting one of the photons using a single-photon detector will herald the presence of the
paired photon to be input into the quantum circuit. Parametric sources are capable of producing single photons
with high spectral purity [11], benefit from awell-definedwave vector leading to high collection efficiency [12],
and have nomode-mismatchwhen integrated on the samemonolithic substrate as the subsequent circuit.
However, parametric sources are inherently inefficient, due to the thermal nature of the output statistics and the
requirement to keep themulti-photon emissions low, resulting in amaximum single-photon output probability
of 25% [13]. For applications requiringmany single photons, the probability of successfully generatingN single
photons simultaneously withNHSPSs decreases asN becomes large, severely limiting the size of practical
circuits.
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An approach to overcome all of the scaling problemswithHSPSs is themultiplexed (MUX) single-photon
source [14], which uses an array ofHSPSs, delay lines, electronics for classical logic operations, and an active
optical switching network to approximate a true on-demand source (figure 1(b)). Using an array ofHSPSs as a
collective unitmeans that the probability that at least one of theHSPSs emits a single photon is high, while a
switching network driven by the heralding signals is used to route the generated photon into a specific spatial-
temporal outputmode. This results in the near-deterministic generation of single photons, allowing formuch
larger quantum circuits than could be feasibly built withHSPSswithout activemultiplexing.MUX sources
inherit the same benefits as parametricHSPSs, including theirmature theoretical and experimental
investigation, and are especially appealing due the prospects of a fully integrated devicewith existing fabrication
processes.

Several theoretical schemes have been previously investigated [15–23] and experimental work using bulk
[24] and integrated [25, 26] components has been demonstrated. Previouswork has highlighted the
fundamental constraints for creating pure states using parametric processes assuming idealMUXcomponents
[13].However, in real physical settings, non-ideal components will limit the efficiency and outputfidelity of
MUX sources. Themost significant sources of error inmultiplexed sources are likely to be photon loss in the
optical components and the non-unit detection efficiency of the heralding detectors (which can also be viewed as
photon loss). Assessing the suitability of aMUX sources using lossy components is an important consideration
formany quantumphotonic technologies, in particular the large-scale quantum computer, as fault-tolerance
thresholds will place demands on the required source efficiency andfidelity [10, 27].

The aimof this work is to assess the impact of photon loss on the performance ofmultiplexed single-photon
sources.We start by detailing the heralded single photon source (HSPS), which is a key building block of all the
MUX sources, and include the effect of photon loss and non-unit efficiency number-resolving and non-number
resolving detectors.We extend this description to generalmultiplexed single-photon sources with lossy
components and derive expressions for single-photon andmulti-photon emission probabilities.We then apply
these expressions to three specificmultiplexing source architectures and consider their tradeoffs in design and
performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate
themultiplexed sources when used formany-photon state generation under various amounts of component
loss.We conclude by discussing the prospects of using the differentMUX architectures with realistic
components for near- and long-term experimental goals.

2. The heralded single photon source

2.1. Theory andfigures ofmerit
All theMUX sources we consider are composed of a core component called theHSPS (figure 1(a)). AHSPS is a
non-deterministic sourcewith a logic output set to 1when it emits a photon and set to 0 otherwise.We consider
aHSPS composed of (1) a photon pair generation stage inwhich photons are produced at non-degenerate
wavelengths λs (signal) and λi (idler), (2) afilter which removes the pump and separates the signal from the idler
into two different paths, and (3) a detector on the idler armwhich heralds the emission of the signal photon. For

Figure 1. (a)Heralded single-photon source (HSPS). A laser pumps a parametric pair sourcewhich spontaneously emits a signal and
an idler photon. Afilter separates the pump, signal, and idler. The idler photon is detected using a single-photon detector (SPD),
heralding the presence of the signal photon. (b) A generalmultiplexed (MUX) single-photon source.N HSPSs are pumped
simultaneously; the idler photons are detectedwhile the signal photons are stored in a long delay line. A classical logic unit determines
the configuration for the ×N 1 switching network based on the detection signals, routing a successfully generated single photon to
the output.
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now,we assume the photon pairs are generated as a biphoton two-mode squeezed vacuum state such that their
joint spectrum is disentangled [28]. Furthermore, we assume that all signal photons produced fromdifferent
HSPSs are perfectly indistinguishable in all degrees of freedom except for the spatialmode inwhich they are
generated.

The source is characterized by a squeezing parameter ξ, determined by the pump intensity and strength of
the nonlinearity, a trigger probability ptrig, the probability for the heralded state to be a single photon psingle, also
called the statefidelity or heralding efficiency, and the probability for the heralded state to be contaminatedwith
multiple photons, pmulti. Quantifyingmulti-photon contamination separately from vacuumemissions is
especially important; vacuum emissions can be treated as effective loss in a linear optical quantum circuit while
multi-photon events can result in other types of errors, and linear optical quantum circuits have been shown to
have amuch higher tolerance to loss than to other errors [10].

We aim at deriving expressions for ptrig, psingle, and pmulti for the case inwhich the heralding detector is
number-resolving and the case inwhich the detector is non-number resolving (also called a threshold detector).
The state produced by the pair source, assuming spectral disentanglement, is of the form [29]:

∑ψ ξ ξ ξ= − + +
=
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where i and s are the idler and signalmodes. In practice, sources and filters have losses, and the heralding detector
does not have a unit efficiency detection.We call ηi the global collection efficiency on the idler arm accounting
for all these effects, and ηs is the overall transmission on the signal arm accounting for losses in the sources and
filters. Each lossy component ismodelled as an ideal component preceded by an ideal beamsplitter with a non-
unit transmission probability. The full state, after accounting for losses and tracing over lossmodes, can
therefore bewritten:
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where ρ = ∣ 〉 ∣ 〉 〈 ∣ 〈 ∣p k p kˆp k i s i s, andCn
k is the binomial coefficient.

This expressionwill be the starting point to derive p Dtrig , p Dsingle , and p Dmulti for the two detection schemes.

In this paper we use the subscriptD on expressions to indicate the type of detector considered: NRD for number-
resolving detector andTD for threshold detector. Detailed derivations can be found in appendix A.

2.2.Heralded single-photon source parameters
Threshold detector
Startingwith the reduced state (equation (2)) and tracing out the signalmode, the probability for the
detector on the idler arm to trigger is given by summing all the contribution of the states having at least one
photon and is given by:
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The heralded state in the signal arm is expressed, renormalizing by dividing by ptrig TD, as:
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Wecan compute the probability that the heralded state is a single-photon using ρ= 〈 ∣ ∣ 〉p 1 ˆ 1s ssingle TD heralded TD :
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The probability that the heralded state containsmulti-photon contamination is given by
ρ= ∑ 〈 ∣ ∣ 〉=

∞p m mˆ
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Note thatwe can also similarly derive an expression for the probability that the heralded state is any Fock number
state using ρ〈 ∣ ∣ 〉n nˆs sheralded TD .

Number-resolving detector
Wenow consider the case inwhich the detector is number resolving. In practice, we only need to discriminate
the single-photon state from the vacuumand from states having two ormore photons. Therefore, the detector
does not need to be able to distinguish between two and >N 2 photon states. Starting again from equation (2),
tracing out the signalmode and calculating the probability to get only one photon gives:
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As in the previous case, we can compute the probability the heralded state contains one photon
ρ= 〈 ∣ ∣ 〉p 1 ˆ 1s ssingle NRD heralded NRD :
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Not surprisingly, contrary to the previous case, number-resolving detectors enable unitfidelity in the absence of
losses ( =p 1single NRD when η η= = 1i s ). The probability for the heralded state to containmulti-photon

contamination is given by:
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Wecan again similarly derive an expression for the probability that the heralded state is any Fock number state
using ρ〈 ∣ ∣ 〉n nˆs sheralded NRD .

2.3.Discussion
Wenowhave a complete framework for characterizing anyHSPS.We assumed no joint spectral entanglement
between photons in a generated photon pair.However, we can account for joint spectral entanglement by
redefining thefidelity as ′ = ×p p PD Dsingle single where P is the purity of the heralded single photon. Recall that,

in the ideal case of lossless components, the probability ptrig NRD of heralding a unitfidelity single photon is

bounded by 0.25 (achievedwhen ξ∣ ∣ = 0.52 maximizes the probability ξ ξ∣ ∣ − ∣ ∣( )12 2 ). Clearly, HSPS do not

suffice on their own to function as a near-deterministic single-photon source, providing in the ideal scenario one
photon every four pulses on average.

Aswewill see in section 3, the probability ofmulti-photon contamination from individualHSPSs
approximates the probability ofmulti-photon contamination fromMUX sources.We therefore graph p Dmulti

as a function of idler transmission ηi for several squeezing parameters ξ∣ ∣2 infigures 2(a) and (b). To focus on the
effect of ηi, we take η = 1s ; the plots therefore serve as an upper bound on p Dmulti .We see that threshold
detectors only reliably herald a single-photon state for very low levels of squeezing, while number-resolving
detectors achieve amuch lower level of contaminationwith the same squeezing parameter.With number-
resolving detectors, 10% loss in the idler arm (ni=0.90), and pumpingwith =p 0.09pair ξ∣ ∣ =( 0.1)2 , themulti-

photon contamination level is almost an order ofmagnitude lower (∼0.02) comparedwith that of threshold
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detectors with the same squeezing parameter (∼0.1). Despite their enhanced performance compared to
threshold detectors, number-resolving detectors with the highest pumping parameters are not immune to loss;
even 10% loss in the idler armwith =p 0.25pair ξ∣ ∣ =( 0.5)2 results in a probability ofmulti-photon

contamination of ∼0.1.Achieving a lower level of contamination requires a reduction in either the squeezing
parameter or the loss in the idler arm.

In section 3wewill show that a practicalmultiplexed sourcewill require operation in the strong pumping
regime, thus showing that threshold detectors can not be used formultiplexed sources with the highest efficiency
and low levels ofmulti-photon contamination. For this reason, and due to space constraints, wewill only
consider number-resolving detectors in the remainder of the paper.However, the derived expression for
threshold detectors can still be used in the framework formultiplexed sources.

3.Multiplexed single-photon sources

3.1. General considerations
AgeneralMUX source can be characterized in a similar way to theHSPS. The probability per clock-cycle that at
least oneHSPS in an array ofNHSPSs triggers is given by:

= − −( )p p1 1 , (12)
N

trig
MUX

trig

and the probability per clock-cycle that at least one source emits a triggered single-photon is:

= − −( )p p p1 1 . (13)
N

1 single trig

⎛
⎝⎜

⎞
⎠⎟

p1 can in principle bemade arbitrarily close to one, such that a near-deterministic single-photon source (>99%
emission probability) can bemade out of 17HSPSs using a lossless switching network to route the photon from
theHSPSwhich triggered to the output [13].However, in any implementation, the switching networkwill have
loss due to the optical delay lines—required for allowing enough time to reconfigure the switching network
upon trigger from theHSPS—and the intrinsic loss of the switch components, for example 2× 2 couplers and
phasemodulators forMZI-type switches (wewill assume all 2 × 2 switches areMZI-type switches). The network
loss, η N( )network , is proportional to the number of sources used in theMUX source, since additional sources
require a larger switching network for routing. Provided the losses are equally distributed in the network (this
assumption holds for two of the three schemes presented in the further sections), the network loss applies the
same amount of loss to everyHSPS.

For switching networks with balanced loss, the probability per clock-cycle for aMUX source to emit a single
photon, conditioned on theMUX source triggering, is given by psingle

MUX, and is calculated from equation (5) or (10)
(depending on the type of detector) by replacing ηs in the expressionwith the full transmission η η N( )s network .
Similarly, the probability for aMUX source to emitmulti-photon contamination, conditioned on theMUX
source triggering, is given by pmulti

MUX, and is calculated from either equation (6) or (11) (depending on the type of
detector) by replacing ηs in the expressionwith the full transmission η η N( )s network . Using this definition of
psingle
MUX, it then follows that the probability per clock-cycle for amultiplexed source to emit a triggered single-
photon can bewritten:

Figure 2.Probability ofmulti-photon emission pmulti from aHSPS as a function of the efficiency in the idler arm ηi for different

squeezing parameters ξ∣ ∣2 using (a) a threshold detector, (b) a number-resolving detector.
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= ×q p p . (14)MUX single
MUX

trig
MUX

For switching networkswith balanced loss, a convenient lower bound for this probability is given by:

η= × × ( )q p p N , (15)MUX
*

single trig
MUX

network

which uses only the single-photon emission probability from theHSPSs and neglects cases inwhichmulti-
photon contamination from theHSPS reduces to a single-photon due to loss from the switching network.

For amultiplexed source pumped by a pulsed laser with repetition rateR, the emission rate of triggered
single-photons is:

= ×R R q .MUX MUX

Large-scale linear optical experiments requireMmultiplexed sources in parallel for generatingM single
photons. TheM-photon state is heralded by the simultaneous triggering of allMMUXsources (at least one
HSPS perMUX source). For a source pumped by a pulse laserwith repetition rateR, theM-photon generation
rate is:

= ×R R q( ) . (16)M M
MUX MUX

Themulti-photon contamination probability conditioned on heralding theM-photon state is:

= − −( )p p1 1 . (17)M M

multi
MUX

multi
MUX

The analysis so far has been kept general, and can be applied to anyMUX sourcewith balanced network loss.
In the next sections we focus on three specific architectures.

While photon loss and inefficient detectors are likely to be the dominant source of error for the near-term
implementation ofMUX sources, we note that there are other sources of errorwhichwill also have an effect on
MUXperformance. These include dark counts from single-photon detectors [30],mode-mismatch [31], and
circuit faults. These effects are left to a future analysis.We also assume that the detector deadtimes are smaller
than the system clock period, and therefore loss effects due to detector deadtimes are not considered in our
current work.

3.2. Log-tree source
ThefirstMUX implementationwe consider is called the log-tree source. In this scheme, the output optical ports
ofNHSPS sources are connected to an ×N 1 reconfigurable switch, which is a logarithmic tree composed of

2 × 2 switches (figure 3(a)). UsingN sources requires a log tree with a depth of Nln

ln 2
⎡⎢ ⎤⎥ 2 × 2 switches in order to

route any of theN sources to the output. The signal photons are stored in delay lines as the electrical trigger
output is sent to a logic circuit and the network configuration is determined and set.

The network loss is given by η η η=N( )network delay
Nln

ln 2
⎡⎢ ⎤⎥ where η is the transmission of a switch in the log tree

network and ηdelay is the loss of the delay line. From equation (14), the probability per clock-cycle for the log-tree

multiplexed source to emit a triggered single-photon is given by:
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Figure 3. (a) Log-treeMUX source. The trigger output of eachHSPS is linked to logic circuit which configures the setting of each
switch in the network. (b), (c)Maximal probability of triggered single-photon emission and optimal number ofHSPSs perMUX
source as a function of the switch loss. Each color represents a given probability to trigger ptrig. The plain lines (left axis) represent the
maximal single-photon emission probability for a given switch loss. The dashed line (right axis) is the number ofHSPSs needed to
attain themaximal single-photon emission probability for a given switch loss. (c) Shows detail at low switch losses (<0.2 dB).We plot
the graphswith η = 1delay and =p 1single .
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= − −( )q p p1 1 . (18)
N

tree single
tree

trig

⎛
⎝⎜

⎞
⎠⎟

and has the lower bound (equation (15)):

η η= − −( )q p p1 1 . (19)
N

tree
*

single trig delay
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⎛
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The optimal number of sources for a given switch loss is found by numerically finding theNwhichmaximizes
equation (19). To study the effect of switching loss in isolation fromother sources of loss, the optimalN and qtree

*

with η = 1delay and =p 1single are plotted as a function of the 2× 2 switch loss infigures 3(b) and (c). As

expected, we see that the probability of triggered single-photon emission tends towards 1 in the limit of low
switching loss for all trigger probabilities. The number ofHSPSs required in theweak pump regime (ptrig < 0.01)
is likely to be impractical: obtaining a probability of single photon emission >q 0.9tree

* with =p 0.01trig requires

512 sources in parallel and switches with 0.05 dB loss (∼0.989 transmission). Obtaining >q 0.9tree
* with

=p 0.1trig requires 64 sources in parallel and switches with 0.07 dB loss (∼0.984 transmission).With the

maximum trigger probability =p 0.25trig , only 16 sources and switches with 0.1 dB loss (∼0.977 transmission)

are required.
Because the switching network is balanced, the probability for a triggered log-treeMUX source to emit

multi-photon contamination pmulti
MUX is calculated as explained in section 3.1 using η η η=N( )network delay

Nln
ln 2

⎡⎢ ⎤⎥ .

Since the loss from the switching network can only decrease pmulti
MUX, themulti-photon contamination

probabilities for theHSPSs infigures 2(a) and (b) serve as valid upper bounds for pmulti
MUX.Wewill consider these

expressions furtherwhenwe considerM-photon state generation in section 4.

3.3. GeneralizedMach–Zehnder interferometer
Like the log-tree source, this scheme also usesNHSPS sources connected to a ×N 1 reconfigurable switch
(figure 4(a)). However, here the ×N 1 switch is a generalizedMach–Zehnder interferometer (GMZ)-
composed of twoN×N balanced splitters enclosingN phasemodulators.N phasemodulators are sufficient to
route any input to a givenfixed output port. This is achieved by setting half of the phases to π and setting the
other half to 0, or by applying 0 to all the phases to obtain a full swap. TheN×N passive splitter can either be a
N×NMMIor built fromof 2 × 2 couplers. Fabricating largeN×N balancedMMIswith low loss is challenging,
sowe propose using cascaded couplers (having a reflectivity of 0.5) and crossings as shown infigures 4(b)
and (c).

The lower bound on the probability to emit a triggered single photon qGMZ
* is, from equation (15):

η η η= − − ×( )q p p1 1 , (20)
N

N NGMZ
*

single delay trig modulator
2⎛

⎝⎜
⎞
⎠⎟

where ηmodulator is the transmission of themodulator section and η ×N N is the loss induced by the balancedN×N

switch. If implementedwith couplers with transmission ηcoupler, then η η=×
−

N N
N

coupler
1 . To show the effect of

Figure 4.GeneralizedMach–ZehnderMUX source. (a)MultiplexingN HSPSs using a generalizedMZI composed of twoN×N
balanced splitters enclosingN arms each having a tuneable phase φi . (b) Recursive definition of theN×N balanced coupler. A

×N N2 2 balanced coupler is composed ofN 2× 2 couplers each having one arm connected to aN×N balanced coupler and the
other arm connected to anotherN×N balanced coupler. (c) Examples of circuit layouts for the 4 × 4 and 8× 8 balanced couplers.
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coupler loss, the optimal number of sources to achieve a probability of triggered single photon emission qGMZ
*

with η η =p 1single delay modulator is plotted infigure 5.

The choice between the log tree and theGMZdepends on the dominant component loss. In theGMZ, the
photonmust pass only a single phasemodulator, instead of a logarithmic number as in the log-tree scheme.
However, theGMZ requires a linear scaling in the number of directional couplers the photon passes through,
instead of the logarithmic scaling given by the log tree scheme. Also, theGMZ requires O n( )2 couplers while the
total number of components for the log tree scales linearly. Table 1 shows a summary of the different resource
scalings for the two architectures.

Since the switching network is balanced, the exact probability for emitting a triggered single-photon qGMZ

and the output statemulti-photon contamination probability pmulti
GMZ are calculated as explained in section (3.1)

using η η η η= ×N Nnetwork delay modulator
2 .Wewill consider these expressions further in section 3.

3.4. Chained sources
In this scheme, unit cells—each composed of aHSPS, a delay line, and a 2× 2 switch—are cascaded to build a
chain of sources (figure 6(a)). The electrical output trigger of theHSPS directly drives a switchwhich routes the
emitted photon to the output port while the input port is routed towards a blocked path. As in the other
schemes, an optical delay line allows sufficient time for the detection of the idler photon and the configuration of
the switch.

The chained scheme benefits fromvery simple control logic requirements, since each switch is only driven
by oneHSPS. For switches driven by voltage, for example, the logic consists only of amplifying the trigger signal
from theHSPS to the required switching voltage. This switching logic privileges theHSPS emitting closest to the
output of the chain, and hence the photon from theHSPS suffering the least from the losses. As an example, if
two cells are cascaded and cell 2 triggers before cell 1, the switch corresponding to cell 1will remove the photon
from theHSPS of cell 2 and replace it with a new photon from theHSPS of cell 1.

Since the switching network applies different amounts of loss to the differentHSPSs, we cannot derive the
lower bound for the single-photon emission probability qchain

* using themethod given in section 3.1.We
therefore show a different derivation here. Given a chain ofN unit cells, assumingHSPSswith a probability of
triggering ptrig, a probability for the heralded state to be a single photon psingle, and switches with transmission η,

Figure 5.GMZMUX source:maximal probability of triggered single-photon emission and optimal number ofHSPSs perMUX
source as a function of the switch loss. Each color represents a given probability to trigger ptrig. The plain lines (left axis) represent the
maximal single-photon emission probability for a given coupler loss. The dashed line (right axis) is the number ofHSPSs needed to
attain themaximal single-photon emission probability for a given coupler loss. (c) Shows detail at low coupler losses (<0.2 dB).We
plot the graphswith ηdelay ,ηmodulator, and =p 1single .

Table 1.Comparison of the requirements and component depth between the log tree and generalizedMZI architectures as a function of the
number ofHSPSsN. The first two columns give the total number of component of the given type required for building the switch. The last
two columns provide the depth of the circuit for each component—or the number of components of each type that each photon has to go
through.

Source type Total number of phasemodulators Total number of directional couplers Phasemodulator depth Coupler depth

Log tree −N 1 2 −N( 1) Nlog ( )2 2 Nlog ( )2

GMZ N + −( )N N Nlog ( ) 1

4

2 1 2 −N( 1)
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qchain
* is given by summing the probabilities for each source tofire given that the subsequent ones do not, and

accounting for switching losses, which gives:

∑η η

η η
η

η

= −

=
− −

− −

=

−
( )

( )
( )

q p p p

p p
p

p

1

1 1

1 1
. (21)

n

N
n

n

N

chain
*

single delay
1

trig trig

1

single delay trig

trig

trig

⎡
⎣⎢

⎤
⎦⎥

Themaximal probability for emitting a single photon is obtained in the limit of an infinite chain

η=
η

η− −( )
q p

p

p
max single delay

1 1

trig

trig

. In practice, to operate at a fraction f of themaximal probability qmax
* , the length

of the chain is given by solving η η=
η

η

− −

− −

( )
( )

fq p p
p

pmax
*

single delay trig

1 1

1 1

N

trig

trig

⎡
⎣⎢

⎤
⎦⎥

which gives:

η
= −

−( )
N

x

p

ln (1 )

ln 1
. (22)

trig

⎡

⎢

⎢⎢⎢ ⎡
⎣⎢

⎤
⎦⎥

⎤

⎥

⎥⎥⎥

We show the single-photon emission probability qchain
* with η =p 1single delay and the number of cells

requiredN as a function of the switching loss for f=0.9 infigure 6(b). Aswith the log tree architecture, the
required number of sources becomes impractical for small ptrig, but can be kept below 8when operating at

=p 0.25trig . The performance of the chained scheme compares well with the performance of the log tree, as

shown infigure 6(c). It has better performances for =p 0.1trig (for a switch loss less than 1.6 dB) and is close to

the log-tree performances for =p 0.25trig .

The derivation for the exact probability of triggered single photon emission qchain and the output statemulti-
photon contamination probability pmulti

chain are shown in appendix B.
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Figure 6.ChainMUX source and performance. (a) Figure 6: array of chained sources.N unit cells are cascaded to build a chained
multiplexed single-photon source. A unit cell is composed of aHSPS, an optical delay line, and a 2× 2 switch. (b)Number of cells
required (dash line, right axis) to achieve amaximal probability of triggered single-photon emission qchain

* (plain line, left axis) as a
function of the switch loss.We chose a fractional efficiency of f=0.9 to compute the required number of cells. Two regimes are plotted
corresponding to =p 0.1trig (red) and =p 0.25trig (blue). (c) Comparison between the chained source (plain) and log tree (dashed)

triggered single-photon emission probability, as a function of switch loss, for twodifferent regimes, =p 0.1trig (orange) and

=p 0.25trig (green). The optimal single-photon probability qmax
* is plotted for both the chain source—for f=1.0, corresponding to

the limit of an infinite number of cascaded cells—and for the log-tree source—using the optimal number of switches.
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4.Discussion: generatingM single photons usingMmultiplexed sources

Experiments with about eight single photons represent the current state-of-the-art photon number for SPDC
experiments in practice, sowewill examine the performance ofmultiplexed sources for the generation
of >10 single photons in separate spatialmodes.Wefirst consider usingM log-treemultiplexed sources to
generateM single photons at a rate of 100 Hz, assuming a pulsed laser seedwith a repetition rate of 100MHz,
number-resolving detectors, and =p 0.1pair . Figure 7 shows themaximum tolerable switch loss for generating

M single photons under these assumptions, and the resulting probability ofmulti-photon contamination in the
output state for this same switch loss.We considered two values for the lumped idler detection efficiency (which
includesfilter loss), η = 0.9i and η = 0.99i , and assumed that this loss is also applied to the signal channel.We
see thatwith η = 0.9i and switches with 1 dB loss (∼0.794 transmission), 14 single photons can be generated at
the target 100 Hz ratewithmulti-photon contamination below 10% . Extending beyond this regime to perform
experiments with 20–40 photonswith less than 10%multi-photon contamination requires η ≈ 0.99i lumped
idler detection efficiencywith 2 × 2 switches having each < −0.4 0.2 dB loss (∼ −0.912 0.955 transmission).

Although these numbers are beyondwhat is attainable using the current state-of-the-art components, they
may be attainable in the near-to-mid-future with further development and integration. For reference, prototype
all-optical switches infiber have demonstrated insertion loss of∼0.6 dB (∼0.871 transmission) [32], on-chip
filters for sufficient pump suppression have demonstrated insertion loss of of∼0.8 dB (∼0.832 transmission)
[33], and state-of-the-art single-photon detectors have demonstrated efficiencies of 0.93 [34]. Although the
single-photon detectors referenced in [34] are non-number-resolving and are limited to a deadtime of 40 ns, we
note that passivemultiplexing techniques using arrays of detectors [35, 36] can achieve approximate number-
resolving capabilities and reduce deadtime. However, the exact effect of loss using these specific detector
architectures onmultiplexed sources, and their resource requirements, is beyond the scope of this paper.

For applications requiring a very large number of single-photons ( ≫M 40), such as the universal quantum
computer, error-correcting and loss-tolerant encodings can be used to achieve fault-tolerant computation,
provided the error rates are below required thresholds.Meeting these thresholds will require sources with the
highest single-photon emission probability and very lowmulti-photon contamination.We briefly consider
what is attainable with optimistic long-term goals for the performance of required hardware components.
Assuming 0.99 lumped idler detection efficiency, 2 × 2 switches with 0.98 transmission, and =p 0.1pair , this

corresponds to amultiplexed single-photon source efficiency of 0.8744, amulti-photon emission probability of
0.0017, and 64HSPSs perMUX source. Using =p 0.25pair , this increases the single-photon source efficiency to

0.8965 and reduces the resource requirements to 16HSPS perMUX source, although at the cost of an increased
multi-photon contamination probability of 0.0083. Further research is necessary to translate these single- and
multi-photon emission probabilities into error rates for fault-tolerance in linear optical quantum computing,
and to optimizemultiplexed source architectures for scalable quantum computation.

Figure 7. Left axis (plain lines): requirements for generatingM single photons at a rate of 100 Hz, from a 100 MHzpulsed laser for two
different idler detection efficiencies. The red lines correspond to a lumped detection efficiency of η η= = 0.9i s . The blue lines
correspond to a lumped detection efficiency of η η= = 0.99i s . (a)Maximum tolerable switch loss (per 2 × 2 switch) versus number
M of log-treeMUX sources operated in parallel. Right axis (dashed lines): probability ofmulti-photon contamination in output state
from theMMUX sources when using themaximum tolerable switch loss. (b)Number ofHSPSs required perMUX source in order to
meet the requirements in (a).
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5. Conclusion

In our analysis we have studiedmultiplexed single-photon sources with photon loss and inefficient detectors.
We derived expressions for single-photon emission probability andmulti-photon contamination probability
using number-resolving and non-number-resolving detectors for a generalHSPS and for threeMUX
architectures: a log-tree switching scheme, a chained switching scheme, and a generalizedMZI scheme.

Our findings indicate that number-resolving detectors offer a considerable advantage over threshold
detectors forMUX sources, and are essential forMUX sources with the highest efficiency. The performance of
the chained scheme compares well with the performance of the log tree, and has a simple logic requirements that
may be beneficial for a near-term implementation. TheGMZoffers an alternative switching structure that
requires fewer phasemodulators butmore directional couplers than the other schemes.

All three of the architectures considered are capable of a high efficiency single-photon sourcewith lowmulti-
photon contamination if the components are close to ideal. For example, with a log-tree architecture composed
of switches with < −0.4 0.2 dB loss (∼ −0.912 0.955 transmission) and number-resolving detectors with 99%
efficiency, a single-photon source capable of producing a 100 Hz rate of 20–40 photon states with less than 10%
multi-photon contamination is possible. Such a sourcewould be a valuable resource for quantum technologies
such as the boson samplingmachine and quantum simulators.With lower-loss switches and the high efficiency
detectors, aMUX source approaching the threshold requirements for a fully fault-tolerant universal quantum
computer should be possible. Further work is necessary tofind the optimalmultiplexing schemeswhich could
encompass the direct generation andmultiplexing ofmulti-photon states or entangled resource states.
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AppendixA.Heralded single-photon source parameters derivation

Threshold detector
The source output state after accounting for losses is given by:

∑ ∑∑ρ ξ ξ η η η η ρ= − − −
=

∞

= =

− −( ) ( ) ( )C Cˆ 1 1 1 ˆ , (23)
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where ρ = ∣ 〉 ∣ 〉 〈 ∣ 〈 ∣p k p kˆp k i s i s, andCn
k is the binomial coefficient.

The probability for the detector placed on the idler arm to trigger is given by summing all the contribution of
states having at least one photon. Startingwith the reduced state after tracing out the signalmode:
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Wecan check the validity of the expression in the two extreme cases. If η = 1i , the probability to trigger is

maximal, ξ= ∣ ∣ptrig
2. If η = 0i then =p 0trig .

The heralded state in the signal arm is expressed, renormalizing by dividing by ptrig, as:
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Wecan compute the probability that the heralded state is a single photon using ρ= 〈 ∣ ∣ 〉p 1 ˆ 1s ssingle TD heralded TD :
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In the lossless case, we obtain ξ= − ∣ ∣( )p 1single TD
2 , which, with a triggering probability ξ= ∣ ∣ptrig

2 (from

equation (24)), is consistent with a probability of getting one photon of ξ ξ∣ ∣ − ∣ ∣( )12 2 (from equation (1)).

The probability that the heralded state containsmulti-photon contamination is derived as follows. First, we
define:
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Number-resolving detector
Nowwe consider the number-resolving detector. Startingwith equation (2), tracing out the signalmode and
calculating the probability to get only one photon:
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Wecan check the validity of the expression in the two extreme cases. If η = 1i , the probability to trigger is
maximal, ξ ξ= − ∣ ∣ ∣ ∣( )p 1trig

2 2. If ηi=0 then =p 0trig .
The corresponding heralded state is:
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As in the previous case,We can compute the probability that the heralded state is a single photon using
ρ= 〈 ∣ ∣ 〉p 1 ˆ 1s ssingle NRD heralded TD :
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Theprobability that the heralded state containsmulti-photon contamination is derived as follows. First, wedefine:
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Then it follows that the probability that the heralded state containsmulti-photon contamination is given by
ρ= ∑ 〈 ∣ ∣ 〉=

∞p m mˆ
m s smulti NRD 2 heralded NRD :

= −p
Z

p
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Appendix B. Chain source derivation

The exact probability of single-photon emission qchain can be calculated as follows. The state from a chain ofN
sources is:

∑ρ ρ= −
=

−

( )p pˆ 1 ˆ ,D
j

N

D D
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j D
0

1

trig trig

where ρ̂ j D is the state heralded by an individualHSPS forwhich the signal armgoes through +j 1 switches each
having transmission η, andD is the type of detector (TD for threshold detector orNRD for number resolving
detector).

For a number resolving detector:
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For a threshold detector:
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The probability that theMUX source triggers is given by:

= − −( )p p1 1 .
N

trig
chain

trig

The probability of single-photon emission conditioned on theMUX source triggering is given by:
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where p j Dsingle is the probability of single-photon emission for an individualHSPS heralding the state ρ̂ j D

(calculated in the sameway as in section 2 but using ρ̂ j D ). Thenwe have:

= ×q p p .D D Dchain single
chain

trig
chain

The probability ofmulti photon contamination conditioned on theMUX source triggering is given by:

∑= −
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s j D s
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where Z j D is the normalization constant for an individualHSPS heralding the state ρ̂ j D (calculated in the same

way as in section 2 but using ρ̂ j D) Thenwe can rewrite (29) as:
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= −p
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chain single
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